

Raka Bandyo Fall 2001



Detectors Systems Branch Code 553

#### MEMS Technology Development

Micro-Electromechanical Systems have become an extremely important area of technological advances. The conservation of power, light-weight devices, and cost of production are the driving reasons for its perusal. At the NASA Goddard Space Flight Center (GSFC) it is hoped to revolutionize imaging and spectroscopy systems.

#### Next Generation Space Telescope

The Detector Systems Branch of NASA, GSFC is in the process of developing and fabricating a two dimensional array of individually addressable micro-mirrors. These mirrors have 50µm x 100µm pixel size and are electrostatically actuated with tilting capabilities of +/-



Artist's view of a micro-mirror

10°. They are supposed to be used as programmable slits in the Multi-Object-Spectrometer (MOS) for the NGST project. The efficiency of observation will be increased by a factor of 1000 using these MEMS devices as compared to a conventional non-MEMS based instrument.

#### Micro-Mirror-Array (MMA)



Artist's view of the MMA



Concept of MMA USE

### **NGST MOS Applications**

NGST, an 6.5 meter class telescope, will be launched in 2009. The MOS programmable slits will simultaneously selects light from several Galaxies of interest and discard unwanted light from immediate neighbors.





## MMA, Fabricated at GSFC



#### Material for MMA

To achieve best performance of the micromirror-array at cryogenic temperature (40K), Material Selection is important:

- High yield strength and elongation
- Properties at cryogenic temperature
- Thin-filmed Al or Al-alloy
- Little to no Cu in the alloy composition

# Sample Fabrication at DDL

Sample Preparation Methods

- Evaporation
- Sputtering
- Photolithography
- Metal etching
- Dicing of samples



Aluminum Alloys Used

- 1100 (Pure)
- 5052
- 5083
- 5086
- 6063

## **Testing**



Thickness: 0.85µm



W: 3mm

Through close collaboration with the Material Science and **Engineering Department at** the University of Maryland and with the Materials branch at GSFC, sample preparation and tensile testing of the samples will be conducted using a Dynamic Mechanical Analyzer. By analyzing this new materials information with the Mechanical Systems Analysis and Simulation Branch, the best material for this application will be chosen.

# Recognition

- Mitra Dutta Leader of MMA Project
- Tony Zheng Detectors Branch
- Kiyotaka Mori University of Maryland
- Charles He Materials Branch
- Jim Loughlin Mechanical Systems Analysis and Simulation Branch